Monte Carlo estimators for the Schatten p-norm of symmetric positive semidefinite matrices

نویسندگان

چکیده

We present numerical methods for computing the Schatten p-norm of positive semi-definite matrices. Our motivation stems from uncertainty quantification and optimal experimental design inverse problems, where defines a measure uncertainty. Computing high-dimensional matrices is computationally expensive. propose matrix-free method to estimate using Monte Carlo estimator derive convergence results error estimates estimator. To efficiently compute non-integer large values p, we use an Chebyshev polynomial approximations extend our analysis this setting as well. demonstrate performance proposed estimators on several test in application model problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

A Norm Compression Inequality for Block Partitioned Positive Semidefinite Matrices

where B and D are square blocks. We prove the following inequalities for the Schatten q-norm ||.||q , which are sharp when the blocks are of size at least 2× 2: ||A||q ≤ (2 q − 2)||C||q + ||B|| q q + ||D|| q q, 1 ≤ q ≤ 2, and ||A||q ≥ (2 q − 2)||C||q + ||B|| q q + ||D|| q q, 2 ≤ q. These bounds can be extended to symmetric partitionings into larger numbers of blocks, at the expense of no longer...

متن کامل

singular value inequalities for positive semidefinite matrices

in this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl‎. ‎308 (2000) 203-211] and [linear algebra appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

A Sparse Decomposition of Low Rank Symmetric Positive Semidefinite Matrices

Suppose that A ∈ RN×N is symmetric positive semidefinite with rank K ≤ N . Our goal is to decompose A into K rank-one matrices ∑K k=1 gkg T k where the modes {gk} K k=1 are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where A is the covariance function and is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Transactions on Numerical Analysis

سال: 2021

ISSN: ['1068-9613', '1097-4067']

DOI: https://doi.org/10.1553/etna_vol55s213